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LETTER TO THE EDITOR 

Self-amplification of turbulent 3~ vorticity field and ZD 

vorticity gradient 

E A Novikovt 
Inmilute for Nonlinear Science, Universily ot California. San Diego, La Jolla, CA 92093- 
0402, USA 

Received 30 January 1992, in final form 26 Febmary 1992 

AbslracL Tne enects ot self-amplification of vonicity field in 3D turbulence and vonicily 
gradient in m turbulence are considered. Tne nnditionally averaged tensor of strain 
rates (with k e d  vonicity) is obtained for 3D turbulence. 'Ile mrresponding lensor (with 
fued vonicily gradient) is obtained for 2D turbulence. These mul ls  are discussed in lhe 
context of obselvations and direcl numerical simulations of turbulent flown. In panicular, 
the appearance of 'vortex srings' in 3D turbulent flows is in accord wilh lhe obtained 
formula (8). ' I l e  presented method is quile general and can be applied to a variety of 
physical systems with rtmng interaction. 

The internal dynamics of strong interactions in turbulent flows is better described 
in terms of local characteristics of motion [l]. Local characteristics must have a 
mechanism of self-amplification and should not depend directly on the sources of 
energy. For 3D turbulence the local characteristic of motion is the vorticity field 12-41 
and self-amplification is the well known effect of stretching of vortex filaments. For 
ZD turbulence the local characteristic of motion is the vorticity gradient (vc) [4, 51 
and self-amplification is the compression of fluid element in the direction of VG. We 
use the concept of self-amplification because in both cases the tensor of strain rates 
is expressed in terms of local characteristics. 

The hierarchy of 'kinetic' equations for a 3D vorticity field was obtained in [3] from 
the NavierStokes equations. These arc the equations for ?~-particle (Lagrangian) 
and n-point (Eulerian) probability distributions of vorticity field. It turns out to be 
very useful to express the first equation of this hierarchy in terms of a conditionally 
averaged vorticity field Qi on a distance r from the point I with fixed vorticity w [4] 

n i ( r , w )  = p ; ' ( w )  w ~ p 2 ( w ' , w , r ) d w '  r = I' - 5 .  (1) J 
Here p1 and pz are one-point and two-point probability distributions of vorticity. For 
statistically non-homogeneous flow all characteristics can depend slowly on position 
I. We will call the Fourier tramformation of (1) the conditional spcctrum of vorticity 

- 
n , ( k , w )  = - e x p { - i k r ) n i ( r , w )  d r  
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where k is the wavenumber vector. 

flow 
We express the space derivative of velocity in terms of vorticity for incompressible 

- a v i ( 2 )  = -- nk.njexp{-ik(z' - z))w,(z')dkdz'. (3) 

Here ci.,,, is the unit axisymmetric tensor and n i  = k,k-' is the unit wavenumber 
vector. h e  conditional averaging of (4) with fixed w a t  point z gives 

where bar means conditional averaging. The Same procedure can be applied di- 
rectly to the Navier-Stokes equations (written in terms of vorticity field). For locally 
isotropic turbulence the result is [4] 

wkeijm J n,nki?j(k.w)dk = v J k z h i ( k , w ) d k  (5) 

Y being molecular viscosity. For non-homogeneous and decaying turbulence addi- 
tional terms are of order of R-'12 (R being Reynolds number) [4]. Equation (S), 
which is equivalent to the first equation of the above mentioned hierarchy [3] rep- 
resents the statistical balance between vortex stretching and viscous smoothing. By 
multiplying (5) on W; and averaging over w ,  we get the enstrophy balance 

This symmetric tensor depends only on the vector mi and we have only two symmetric 
tensors wiwk and 6ik.  E k i n g  into account incompressibility and (4), we have 

ITi = wiw-1 W = IWI (8) 1 - 
D i ,  = 7 .(U) ( 3 U i  Uk - Si&.)  

=(U) = - e i j m  U ;  J n j  fi,,, p d k  p = oi ni . (9) 

Function principaiiy, can be negative for some W, but with mndition (6) 
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For some solutions [4] of equation (5), expression (9) does not depend on w. In this 
case, from (10) we get 

z being the mean rate of energy dissipation. 
Formula (8) tells us that the maximum absolute rate of strain is along the direction 

of w. Xvo other eigenvalues are equal. This exact result for locally isotropic turbu- 
lence, generally speaking, does not undermine the findings from numerical experiment 
[6] about the most probable orientation of vorticity along the axis with intermediate 
strain rate. These are two different sets of statistical characteristics. In the future, 
it will be interesting to calculate from direct numerical simulations the conditionally 
averaged deformation tensor with b e d  vorticity. The conditionally averaged vorticity 
field (1) can also be obtained from numerical experiments and compared with (8), (9) 
and with solutions, presented in [4]. Formula (8) (with typical a ( w )  > 0,  see (10)) is 
in accord with appearance of 'vortex strings' in 3D turbulent flows (see observations 
in [7] and references therein for numerical experiments). 

For ZD turbulent flow the local characteristic is the vorticity gradient (VG) 

a v .  
w = € . .  2. 

I axi ' J  axi  
aw s. = - 

Here e i j  is unit axisymmetrix ZD tensor, w is now the only one component of vorticity, 
perpendicular to the plane of motion. Formula (8) in the ZD case takes the form 

- 
D , ,  = P ( s )  (27, ~k - S i b )  y, = S; s-l s = I S I .  ('3) 

Here bar now means conditional averaging with fixed S. For the function L?( s) we 
get an expression, analogous to (9) 

p ( s )  = i e i j 7 , J ~ - ' e ~ , ( k , s ) d b  O =  Tini (14) 

S , ( k , S )  = - l J  exp{-ikr)S(r ,s)  d r  . 

i€,,,,s,,, J t - ' n , . ? , ( k , s ) d k  = U J k Z . ? , ( k , s ) d k .  

(15) 
( 2 r Y  

Here 9 is the conditionally averaged VG on a distance r from the p i n t  with fixed s, 
.? is the conditional spectrum of VG. The equation for .? has the form [4, 51 

(16) 

Numerical simulations of U )  turbulence can be compared with (13), (14), as well as 
with solutions of equation (16), presented in [4, 51. For 2D turbulence numerical 
simulation can be done with higher Reynolds number than lor 30 turbulence and 
comparison with the results presented above is easier. The method presented above 
is quite general and can be applied to a variety of physical systems with strong 
interaction, including strongly turbulent plasma. 
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